Preparation, structure and properties of trinuclear $[M_3Se_4(CN)_9]^{5-}$ (M = Mo or W) complexes obtained from M_3Se_7 core compounds and related studies†

Vladimir P. Fedin, Gert J. Lamprecht, Takamitsu Kohzuma, William Clegg, Mark R. J. Elsegood and A. Geoffrey Sykes *

Department of Chemistry, The University of Newcastle, Newcastle upon Tyne NE1 7RU, UK

The preparations of $[Mo_3Se_4(CN)_9]^{5-}$ and $[W_3Se_4(CN)_9]^{5-}$ by reacting polymeric $\{M_3Se_7Br_4\}_x$ or the derivative $[M_3Se_7Br_6]^{2-}$ ions $(M=Mo\ or\ W)$ with CN^- are described. Both products were isolated as the $Cs_5[M_3Se_4(CN)_9]$ CsCl·4H₂O salts. The crystal structures are essentially the same with corresponding cell dimensions within 0.3% of each other, and those for the W compound slightly the larger. The M_3Se_4 cores (approximate symmetry $C_{3\nu}$) can be described as distorted incomplete cubes with, in the tungsten case, $d_{ave}(W-W)$ 2.829, $d_{ave}(W-\mu-Se)$ 2.449, $d_{ave}(W-\mu_3-Se)$ 2.497, $d_{ave}(W-C)$ 2.179 and $d_{ave}(C-N)$ 1.16 Å. A different feature as compared to the sulfide analogues is the weak dimerisation of two trimer units giving short $Se \cdots Se$ contacts (\approx 3.5 Å). The UV/VIS spectra of brown $[Mo_3Se_4(CN)_9]^{5-}$ and green $[W_3Se_4(CN)_9]^{5-}$ indicate a red shift on replacing Mo by W, and a similar shift on exchanging S for Se. In electrochemical studies using cyclic, square-wave and differential pulse voltammetric techniques reduction potentials for the $[M_3Se_4(CN)_9]^{5-/6-}$ couple (vs. normal hydrogen electrode) of -0.63 (Mo) and -0.97 V (W) were obtained. Using a Hg–Au electrode two additional reduction steps were observed, and there is evidence for the formation of Hg-containing heterometallic clusters. Properties of the two aqua ions $[M_3Se_7(H_2O)_6]^{4+}$ were also studied, where these are similarly converted to $[M_3Se_4(CN)_9]^{5-}$ by Se-abstraction and substitution of H_2O by CN^- .

Since their first preparation in the mid/late 1980s,1-4 the trinuclear incomplete cuboidal clusters [Mo₃S₄(H₂O)₉]⁴⁺ and $[W_3S_4(H_2O)_9]^{4+}$ with a vacant metal subsite have attracted much attention.⁵⁻⁹ Both M^{IV}_3 ions have high stability in acidic solutions, and are lead-in compounds for a series of heterometallic cuboidal clusters, particularly extensive in the case of Mo.⁷⁻⁹ More recently the sulfur-rich cluster [Mo₃S₇(H₂O)₆]⁴⁺ and its selenium analogue $[Mo_3Se_7(H_2O)_6]^{4+}$ have been prepared and their solution chemistry explored. ^{10,11} These clusters have for example a single μ_3 -(S) and three μ -(S₂) bridging ligands, with each disulfido group orientated sideways and $\eta^2\!:\!\eta^2$ to the two Mo atoms it bridges. One of the S atoms is equatorial and the other axial to the Mo₃ plane. 12,13 In this paper the aqua ion $[W_3Se_7(H_2O)_6]^{4+}$ has been prepared for the first time from polymeric $\{W_3Se_7Br_4\}_{\times}$ and its properties are considered alongside those of $[Mo_3Se_7(H_2O)_6]^{4+}$. With CN^- , Se abstraction is observed together with CN- replacement of H₂O ligands yielding $[Mo_3Se_4(CN)_9]^{5-}$ and $[W_3Se_4(CN)_9]^{5-}$. The structure of the tellurium analogue [Mo₃Te₇(CN)₆]²⁻ has been reported, but no Te abstraction is observed with CN-.14 Structures of the salts of $[Mo_3Se_4(NCS)_9]^{5-}$ and $[W_3Se_4(NCS)_9]^{5-}$ have contributed to the characterisation of M_3Se_4 cores.

Experimental

Preparation of starting materials

The polymeric chain compounds $\{Mo_3Se_7Br_4\}_x$ and $\{W_3Se_7Br_4\}_x$ were first prepared by direct combination of the elements. It is to convert to the tetraphenylphosphonium salt of discrete anions these were heated under N_2 in a melt of PPh_4Br (1.5 g of Mo or W compound) at 280 °C for 3 h. The cold melt was ground, washed free of PPh_4Br using ethanol, and the products $[PPh_4]_2[Mo_3Se_7Br_6]$ and $[PPh_4]_2[W_3Se_7Br_6]$ used without further purification.

† *Non-SI unit employed*: $M = \text{mol dm}^{-3}$.

Other reagents

The strong acid p-toluenesulfonic acid (Hpts, Aldrich), potassium cyanide (BDH), triphenylphosphine, PPh $_3$ (Aldrich, 5% solution in toluene) and the water soluble sodium tris-(3-sulfonatophenyl)phosphine tetrahydrate, Na $_3$ (3-SO $_3$ C $_6$ H $_4$) $_3$ P·4H $_2$ O (Strem) referred to as PR $_3$ 3- were used. Samples of the latter were shown to contain 10.3% phosphine oxide impurity using 31P NMR spectroscopy. All other reagents were of analytical grade purity.

X-Ray crystallography

Crystal data for Cs₅[W₃Se₄(CN)₉]·CsCl·4H₂O: C₉H₈ClCs₆- $N_9O_4Se_4W_3$, M=2006.5, triclinic, space group $P\bar{1}$, a=11.842(10), b = 12.219(9), c = 14.671(12) Å, $\alpha = 90.50(4)$, $\beta =$ 112.40(4), $\gamma = 115.27(3)^{\circ}$, $U = 1737(2) \text{ Å}^3$, Z = 2, $D_c = 3.836 \text{ g}$ cm⁻³, $\mu = 20.40 \text{ mm}^{-1}$ (Mo-K α , $\lambda = 0.710 73 \text{ Å}$), F(000) = 1724, T = 160 K. A crystal of size $0.38 \times 0.29 \times 0.29$ mm was examined on a Stoe-Siemens four-circle diffractometer. Cell parameters were refined from 2θ values (30-40°) of 30 reflections measured at ±ω to minimise systematic errors. Intensities were measured with ω - θ scans and on-line profile fitting. 6716 measured reflections ($2\theta \le 50^{\circ}$), corrected semiempirically for absorption (transmission 0.077-0.109), yielded 6081 unique data $(R_{int} = 0.0730)$ for structure solution (direct methods) and refinement (least-squares on F^2 values with weighting $w^{-1}=\sigma^2(F_o^2)+(0.0862P)^2+42.0712P$, where $P=(F_o^2+2F_c^2)/(1.0862P)^2+42.0712P$ 3). One Cs⁺ ion is disordered over two sites. Hydrogen atoms were not located, C and N atoms were refined with isotropic, other atoms with anisotropic displacement parameters. An isotropic extinction parameter x was refined to 0.00160(15), whereby $F_c = F_c/(1 + 0.001 x \lambda^3 F_c^2/\sin 2\theta)^{\frac{1}{2}}$. Final $R' = \{\Sigma [w - (F_o^2 - F_c^2)^2]/\Sigma [w (F_o^2)^2]\}^{\frac{1}{2}} = 0.1459$ for all data, conventional R = 0.0514 on F values of 5708 reflections having $F_o^2 > 2\sigma(F_o^2)$, goodness of fit = 1.116 on all F^2 values with 246 refined parameters. Some difference electron density peaks of up to 4 e Å-3 lay close to heavy atoms. Programs: SHELXTL 19 and local

Table 1 Selected bond lengths (Å) and angles (°) for $Cs_5[W_3Se_4-(CN)_9]\cdot CsCl\cdot 4H_9O$

W(1)-W(2)	2.840(3)	W(1)-Se(1)	2.498(2)
W(1)-W(3)	2.822(2)	W(2)-Se(1)	2.494(3)
W(2)-W(3)	2.826(2)	W(3)-Se(1)	2.498(2)
W(1)-Se(2)	2.446(2)	W(1)-Se(4)	2.441(2)
W(2)-Se(2)	2.445(2)	W(2)-Se(3)	2.454(2)
W(3)-Se(3)	2.460(3)	W(3)-Se(4)	2.447(2)
W(1)-C(1)	2.157(15)	W(1)-C(2)	2.190(14)
W(1)-C(3)	2.178(13)	W(2)-C(4)	2.193(13)
W(2)-C(5)	2.153(13)	W(2)-C(6)	2.173(14)
W(3)-C(7)	2.178(14)	W(3)-C(8)	2.180(14)
W(3)-C(9)	2.201(13)	C(1)-N(1)	1.15(2)
C(2)-N(2)	1.161(19)	C(3)-N(3)	1.178(18)
C(4)-N(4)	1.162(19)	C(5)-N(5)	1.173(19)
C(6)-N(6)	1.14(2)	C(7)-N(7)	1.167(19)
C(8)-N(8)	1.16(2)	C(9)-N(9)	1.151(19)
W(3)-W(1)-W(2)	59.87(4)	W(3)-W(2)-W(1)	59.76(5)
W(1)-W(3)-W(2)	60.37(6)	Se(4)-W(1)-Se(2)	100.80(7)
Se(4)-W(1)-Se(1)	108.23(6)	Se(2)-W(1)-Se(1)	107.23(8)
Se(2)-W(2)-Se(3)	99.75(6)	Se(2)-W(2)-Se(1)	107.39(8)
Se(3)-W(2)-Se(1)	108.62(7)	Se(4)-W(3)-Se(3)	99.19(9)
Se(4)-W(3)-Se(1)	108.05(6)	Se(3)-W(3)-Se(1)	108.30(7)
W(2)-Se(1)-W(3)	68.95(6)	W(2)-Se(1)-W(1)	69.35(8)
W(3)-Se(1)-W(1)	68.80(5)	W(2)-Se(2)-W(1)	70.98(8)
W(2)-Se(3)-W(3)	70.19(6)	W(1)-Se(4)-W(3)	70.53(5)

programs. Selected bond lengths and angles are given in Table 1.

Crystal data for Cs₅[Mo₃Se₄(CN)₉]·CsCl·4H₂O: C₉H₈ClCs₆·Mo₃N₉O₄Se₄, M=1742.8, triclinic, space group $P\bar{1}$, a=11.818(10), b=12.191(8), c=14.635(8) Å, $\alpha=90.94(5)$, $\beta=112.23(6)$, $\gamma=115.16(5)^\circ$, U=1727(2), Z=2, $D_c=3.352$ g cm⁻³, $\mu=11.6$ mm⁻¹, F(000)=1532, T=160 K. Intensity data were not measured.

Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, *J. Chem. Soc., Dalton Trans.*, 1997, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 186/467.

Electrochemical measurements

These were carried out using a computer-interfaced PAR Model 173 potentiostat. Prior to each experiment, the glassy carbon electrode was polished with 0.3 mm alumina, sonicated for 1 min, and rinsed thoroughly with distilled water. A mercury–gold electrode was prepared by coating a freshly polished gold electrode surface with triply-distilled mercury, and can be considered as equivalent to a hanging mercury-drop electrode. The working compartment was made air-free by passing $N_{\rm 2}$ through the electrochemical cell. The reference electrode was Ag–AgCl, and a platinum wire counter electrode was used. Potassium chloride (0.10 M) was the supporting electrolyte in all cases.

Results and Discussion

Preparation of $[M_3Se_4(CN)_9]^{5-}$ clusters (M = Mo or W)

The most direct method was by treating the polymeric material $\{M_3Se_7Br_4\}_x$ with CN^- , and is the same for both M=Mo and W. A suspension of $\{M_3Se_7Br_4\}_x$ (1 g) in an aqueous solution of KCN (1 g in 10 cm³) was stirred for ≈ 60 min [equation (1)].

$$M_3Se_7Br_4 + 12CN^- \longrightarrow [M_3Se_4(CN)_9]^{5-} + 3SeCN^- + 4Br^-$$
 (1)

After filtering, CsCl (1 g) was added. The solutions, brown for $[Mo_3Se_4(CN)_9]^{5-}$ and green for $[W_3Se_4(CN)_9]^{5-}$, were kept at ambient temperatures for 5–7 d (volume 2–3 cm³). Dark brown (Mo) or green (W) crystals of $Cs_5[M_3Se_4(CN)_9]\cdot CsCl\cdot 4H_2O$

separated, were filtered off and washed with diethyl ether. Yield 0.65 g (43% for Mo) and 0.54 g (38% for W). Alternatively the reactions of $[PPh_4]_2[M_3Se_7Br_6]$ with CN^- [equation (2)] could be used.

$$[M_3Se_7Br_6]^{2^-} + 12CN^- \longrightarrow [M_3Se_4(CN)_9]^{5^-} + 3SeCN^- + 6Br^-$$
 (2)

Preparation of solutions of $[M_3Se_7(H_2O)_6]^{4+}$ (M = Mo or W)

The procedure in the case of $[Mo_3Se_7(H_2O)_6]^{4+}$ has been described in an earlier study.¹¹ The tungsten analogue was prepared by a similar method [equation (3)]. Thus a solution of

$$[W_3Se_7Br_6]^{2-} + 6H_2O \longrightarrow [W_3Se_7(H_2O)_6]^{4+} + 6Br^-$$
 (3)

 $[PPh_4]_2[W_3Se_7Br_6]$ (0.5 g) in 4 M Hpts (50 cm³) was kept at 50-60 °C for 6 h. The yellow-orange solution obtained after filtration was diluted seven-fold with H2O and loaded onto a Dowex 50W-X2 cation-exchange resin column. A well defined tight band at the top of the column was eluted with strong acid, e.g. 2-4 M Hpts. Inductively coupled plasma analyses gave a Mo to Se ratio of 3:7.2 for $[Mo_3Se_7(H_2O)_6]^{4+}$, and 3:7.1 for $[W_3Se_7(H_2O)_6]^{4+}$. Solution yields were $[Mo_3Se_7(H_2O)_6]^{4+}$ (44%) and [W₃Se₇(H₂O)₆]⁴⁺ (35%). Increasing absorbance is observed towards the UV with shoulders only at ≈ 370 ($\epsilon = 1150$) and \approx 480 (200) for [Mo₃Se₇(H₂O)₆]⁴⁺, and \approx 375 (1014) and \approx 500 nm (330 M⁻¹ cm⁻¹ per M₃) for [W₃Se₇(H₂O)₆]⁴⁺. More definitive are the [M₃Se₄(H₂O)₉]⁴⁺ UV/VIS spectra obtained on reacting $[M_3Se_7(H_2O)_6]^{4+}$ in 2-3 M Hpts (50 cm³) with 5% triphenylphosphine in toluene (5 cm³) (solutions were stirred for ≈20 min), or with a ≈ten-fold excess of the water-soluble phosphine PR₃³⁻, when faster conversions were observed. Peak positions are at 425 (ϵ = 2460) and 648 (263) for [Mo₃Se₄(H₂O)₉]⁴⁺, ¹⁵ and 359 (\approx 6660) and 618 nm (\approx 547 M⁻¹ cm⁻¹) for [W₂Se₄(H₂O)₉]⁴⁺. In both phosphine reactions the μ-diselenide bonds are cleaved and Se abstraction occurs, equation (4).

$$[M_3Se_7(H_2O)_6]^{4+} + 3PR_3 + 3H_2O \longrightarrow$$

 $[M_3Se_4(H_2O)_9]^{4+} + 3SePR_3$ (4)

Conversion of $[M_3Se_7(H_2O)_6]^{4+}$ into $[M_3Se_4(CN)_9]^{5-}$ (M = Mo or W)

Solutions of $[M_3Se_7(H_2O)_6]^{4+}$ in 2 M Hpts were diluted to $[H^+]=0.5$ M and loaded onto a Dowex 50W-X2 column. After washing with water elution was with 0.1 M KCN. Abstraction of Se by CN^- , and CN^- replacement of H_2O occurs, equation (5)

$$[M_3Se_7(H_2O)_6]^{4+} + 12CN^- \longrightarrow [M_3Se_4(CN)_9]^{5-} + 3SeCN^- + 6H_2O$$
 (5)

Conversion of $[M_3Se_4(H_2O)_9]^{4+}$ into $[M_3Se_4(CN)_9]^{5-}$ $(M=Mo\ or\ W)$

A solution of $[M_3Se_4(H_2O)_9]^{4^+}$ in 2 M HCl was taken to dryness on a vacuum line and a solution of 0.1 M KCN added. Alternatively $[M_3Se_4(H_2O)_9]^{4^+}$ was eluted from a cation-exchange column with 0.1 M CN $^-$. Substitution of H_2O by CN $^-$ gives $[M_3Se_4(CN)_9]^{5^-}$. In none of these reactions are M–Se–M bridges cleaved by the concentrations of CN $^-$ used. A similar situation applies for the sulfido-bridged cluster $[Mo_3S_4-(H_2O)_9]^{4^+}.^{20}$

Structures

The structure of the $[W_3Se_4(CN)_9]^{5-}$ anion is shown in Fig. 1. It has essentially $C_{3\nu}$ symmetry with one μ_3 -Se and three μ_2 -Se. Mean bond lengths are W–W 2.829, W– μ_2 -Se 2.449, W– μ_3 -Se 2.497, W–C 2.179 and C–N 1.16 Å. Crystals of the corresponding

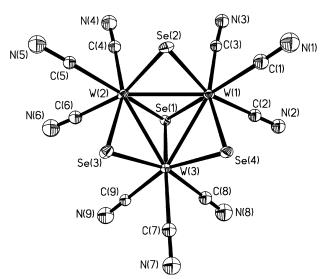


Fig. 1 Structure of the $[W_3Se_4(CN)_9]^{5-}$ anion showing the atom labelling scheme and 50% probability displacement ellipsoids

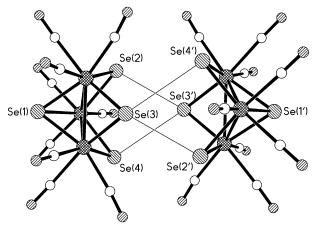
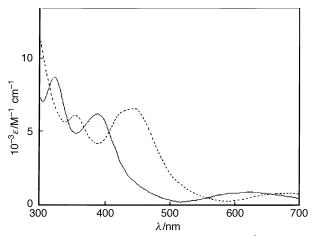


Fig. 2 Structure of the $[W_3Se_4(CN)_9]^{5-}$ anions showing $Se\cdots Se$ interactions between two adjacent clusters

molybdenum complex are isomorphous, with cell axes differing by less than 0.3%, so the structure is probably insignificantly different. The W-Se bonds are slightly longer than those in the $[W_3Se_4(NCS)_9]^{5-}$ anion (mean $W-\mu_2$ -Se 2.393, $W-\mu_3$ -Se 2.458 Å), ¹⁷ and the Mo–Se bonds in $[Mo_3Se_4(NCS)_9]^{5-}$ (mean $Mo-\mu_2$ -Se 2.409, $Mo-\mu_3$ -Se 2.452 Å). ¹⁵ These are the only previously reported structures with incomplete cuboidal M₃Se₄ cores (M = Mo or W). The same type of structure is well known for the M₃S₄ core; the most recent release of the Cambridge Structural Database 21 contains 16 structures of W complexes and 31 structures of Mo complexes. The overall geometry of these M₃S₄ cores is essentially the same as for the M₃Se₄ cores, except that the smaller sulfur atoms lead to shorter M-S bonds, ranging from 2.237 to 2.353 Å for W- $\mu_{\text{2}}\text{-}S_{\text{2}},$ from 2.331 to 2.404 Å for W- μ_3 -S, from 2.238 to 2.393 Å for Mo- μ_2 -S, and from 2.317 to 2.421 Å for Mo $-\mu_3$ -S.

As found previously for the $[W_3Se_4(NCS)_9]^{5-}$ anion,¹⁷ the $[W_3Se_4(CN)_9]^{5-}$ anion in the present structure is weakly dimerised through $Se\cdots Se$ interactions, Fig. 2. The observed distances are 3.415 for $Se(2)\cdots Se(3')$ and 3.686 Å for $Se(4)\cdots Se(3')$, comparable to the distances of 3.361–3.585 Å in the $[W_3Se_4(NCS)_9]^{5-}$ weak dimer,¹⁷ and shorter than the intramolecular distances of 3.737–3.746 Å between pairs of μ_2 -Se atoms in the present structure.


UV/VIS spectra

Peak positions λ/nm (ϵ/M^{-1} cm⁻¹ per trimer) were obtained for both $[M_3Se_4(\text{CN})_9]^{5-}$ clusters (Fig. 3) and are 350 (5070), 443 (5460), 677 (730) (M = Mo); and 322 (8700), 387 (6200), 622 (860) (M = W). The spectrum of $[Mo_3S_4(\text{CN})_9]^{5-}$, 342 (4500),

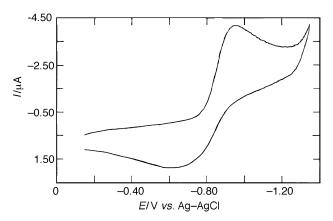
Table 2 A comparison of the lowest energy transition in the UV/VIS electronic spectra λ /nm (ϵ /M $^{-1}$ cm $^{-1}$ per M_3) for M_3Y_4 clusters (M = Mo or W, Y = S or Se)

Cluster	Mo/S	W/S	Mo/Se	W/Se
$[M_3Y_4(H_2O)_9]^{4+}$ in	$602 (251)^a$	$560 (490)^a$	$648 (263)^b$	618
2 M Hpts				
$[M_3Y_4(H_2O)_9]^{4+}$ in	$620 (315)^a$	$570 \ (480)^a$	677^{c}	623^{d}
1 M HCl			/	
$[M_3Y_4(CN)_9]^{5-}$ in	$610 (500)^e$	$579 (370)^f$	677 (730)	611 (860)
H ₂ O		/		
$[M_3Y_4(NCS)_9]^{5-}$ in		$640 \ (730)^a$		680
1 M NCS				

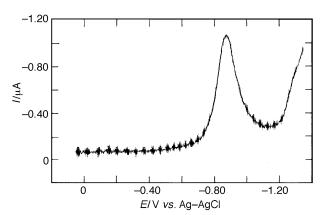
 a Refs. 5 and 6. b Ref. 15. c Absorbance ratio A_{431} : A_{677} = 11.2. d Absorbance ratio A_{358} : A_{623} = 13.6. e Ref. 18. f Ref. 24.

Fig. 3 The UV/VIS spectra of $[Mo_3Se_4(CN)_9]^{5-}$ (---) and $[W_3Se_4(CN)_9]^{5-}$ (——) in H_2O

377 (5500), 610 (500) has been reported previously.20 The relative peak positions Mo > W indicate higher energy ligand-tometal charge transfer (LMCT) transitions for the W cluster, and Se > S with the higher energy transitions for the S clusters. Both effects correlate with known redox properties of the elements. Thus in the $[IrCl_6]^{2-}$ oxidations of $[M^{\dot{V}}_2O_4(H_2O)_6]^{2+}$ and $[M^{IV}_3O_4(H_2O)_9]^{4+}$ the M=W reactions are 10^5-10^6 times faster than those with $M = Mo.^{22}$ Also the electronegativity of sulfur is greater than that of selenium. Müller et al. 20 have reported molecular orbital calculations relating to the electronic structures of [Mo₃S₄(CN)₉]⁵⁻ and other Mo-S complexes. These show that the bonding within a central Mo_xS_v moiety is rather localised (70-80% Mo 4d and S 3p). Li et al.23 on the other hand have reported calculations consistent with delocalisation and multiple bonding in the quasi-aromatic Mo₃(µ₂-S)₃ fragment of the Mo₃S₄⁴⁺ core. An additional band for [Mo₃Se₄(CN)₉]⁵⁻ at 247 nm ($\varepsilon = 17\,000~M^{-1}~cm^{-1}~per~Mo_3$) is observed also for $[Mo_3S_4(CN)_9]^{5-}$, and is assigned to $CN \rightarrow Mo$ charge transfer. Data for the lower energy peaks in the visible region for $[M_3Y_4(H_2O)_9]^{4+}$ (M = Mo or W; Y = S or Se) in 2 M Hpts and 1 M HCl, and for $[M_3Y_4(CN)_9]^{5-}$ and $[M_3Y_4(NCS)_9]^{5-}$ (N bonded) are given in Table 2. Trends observed for the thiocyanato complexes are an interesting feature indicating a greater 'mixing in' with this terminal ligand.


Electrochemical studies

The Mo^{IV}_3 cluster $[Mo_3Se_4(CN)_9]^{5-}$ gives an irreversible cyclic voltammogram, Fig. 4, but a quasi-reversible response at -0.86 (average) vs. Ag–AgCl electrode (-0.63 vs. NHE), Table 3, by SWV corresponding to the $Mo^{IV}_3 + e^- \rightleftharpoons Mo^{III}M^{IV}_2$ change, Fig. 5. Cyclopentadienyl analogues $[Mo_3S_4Cp_3]^+$ and $[Mo_3S_4Cp_3]$ ($Cp = \eta^5 - C_5H_5$) having the same core oxidation states have been studied previously. ^{25,26} In the case of $[Mo_3S_4(CN)_9]^{5-}$, the reduction potential for the same one-


Table 3 Summary of electrochemical data (25 °C) for $[Mo_3Se_4(CN)_9]^{5-}$ and $[W_3Se_4(CN)_9]^{5-}$ in aqueous solution, N_2 atmosphere, I = 0.10 M (KCl) *

Complex	Method	Ep_c/V	Ep _a /V	$E_{2}^{1}\!/\mathrm{V}$	$E^{\mathbf{o}\prime}/\mathrm{V}$	Reversibility	Electrode
$[Mo_3Se_4(CN)_9]^{5-}$	CV	-0.96	-0.62			irrev	GC
1 3 4 701	SWV				-0.87		
	DPV				-0.86		
	CV	-0.86	-0.79	-0.83		q-rev	Hg-Au
	CV	-1.17	-1.11	-1.14		q-rev	Ü
	CV	-1.39				irrev	
	SWV				-0.82		
	SWV				-1.13		
	SWV				-1.29		
	DPV				-0.83		
	DPV				-1.13		
	DPV				-1.28		
$[W_3Se_4(CN)_9]^{5-}$	CV	-1.28	-1.08	-1.18		q-rev	GC
	SWV				-1.20		
	CV	-1.19	-1.09	-1.14		q-rev	Hg-Au
	CV	-1.33				irrev	_
	CV	-1.67				irrev	
	SWV				-1.15		
	SWV				-1.30		
	SWV				-1.62		

^{*} Abbreviations used: CV = cyclic voltammetry, SWV = square wave voltammetry, DPV = differential pulse voltammetry, GC = glassy carbon electrode, Hg-Au is Hg coated Au electrode, CV peak to peak separation (ΔEp) gives E_2 if quasi-reversible (q-rev); potentials are given vs. Ag-AgCl electrode, add 0.22 V to convert to values vs. NHE.

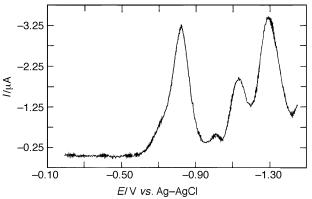


Fig. 4 Cyclic voltammogram for $[Mo_3Se_4(CN)_9]^{5-}$ at a glassy carbon electrode in 0.10 M KCl, cathodic potential -0.96 V and anodic potential -0.62 V vs. Ag–AgCl electrode, irreversible behaviour indicated

Fig. 5 Square-wave voltammogram for the [Mo $_3$ Se $_4$ (CN) $_9$] $^{5-/6-}$ couple giving a reduction potential $E^{o'}=-0.87~V$ vs. Ag–AgCl (-0.65~V vs. NHE) in 0.10 M KCl

electron process has been reported as -1.49~V vs. NHE. 20,27 It is concluded that the Se core ligands stabilize the lower 6- oxidation state. In the case of the tungsten analogue $[W_3Se_4(CN)_9]^{5-}$ the reduction potential of -1.19~V vs. Ag–AgCl (-0.97~V vs. NHE), Table 3, confirms that the W^{IV}_3 cluster is more difficult

Fig. 6 Square-wave voltammogram for $[Mo_3Se_4(CN)_9]^{5-}$ at a Hg–Au electrode in 0.10 M KCl, giving an $E^{9\prime}$ value of -0.82 V vs. Ag–AgCl (-0.60 V vs. NHE) for the $[Mo_3Se_4(CN)_9]^{5-/6-}$ couple and two additional peaks at -1.13 and -1.29 assigned to a Hg-adduct (see text)

to reduce than the Mo^{IV}_3 . Using a glassy carbon electrode both clusters give only one redox stage for the potential range explored. Reduction potentials (ν s. NHE) for the same redox change $M^{IV}_3 + e^- \longleftrightarrow M^{III}M^{IV}_2$ and other couples are for $[Mo_3S_4(Hnta)_3]^{2-/3-}$ (-0.42), $[W_3S_4(Hnta)_3]^{2-/3-}$ (-0.90), $[Mo_3S_4Cl_3(dmpe)_3]^{+/0}$ (-0.42) and $[W_3S_4(Hnta)_3]^{2-/3-}$ (-0.89 V), 28,29 where Hnta is singly-protonated nitrilotriacetate (aqueous solutions), and dmpe = 1,2-bis(dimethylphosphino)ethane (organic solvent). Again the Mo clusters are more readily reduced. The differences observed for the Mo and W analogues of 0.48 and 0.47 V are similar to the 0.34 V value observed in the present studies.

Using a Hg–Au electrode additional redox steps are observed, e.g. Fig. 6. The first peak remains initially unchanged and is assigned to the $[Mo_3Se_4(CN)_9]^{5-/6-}$ couple. The two additional peaks are assigned to Hg heterometallic adducts $[Mo_3HgSe_4(CN)_9]^{5-}$ or a related cluster, in which case couples such as $[Mo_3HgSe_4(CN)_9]^{6-/7-}$ and $[Mo_3HgSe_4(CN)_9]^{7-/8-}$ may be relevant. No colour changes were observed using the Hg–Au electrode. The tungsten complex gives similar behaviour with reduction potentials as listed in Table 3. A hanging mercury-drop electrode was used in the studies by Shibahara *et al.*²⁸ on the Hnta complexes, when three stages were also observed.

Conclusions

Studies on $[Mo_3Se_4(CN)_9]^{5-}$ and $[W_3Se_4(CN)_9]^{5-}$ have further established the chemistry of M_3Se_4 clusters. The structures have virtually identical geometries and short M–M distances observed are consistent with metal–metal bonding. Unlike aqua M_3Se_4 (and M_3S_4) complexes, electrochemical reduction is possible with the cyano products. Reduction potentials (vs. NHE) associated with the $M^{IV}_3 + e^- \rightleftharpoons M^{III}M^{IV}_2$ couple -0.63 (Mo) and -0.97 V (W) illustrate a more readily accessed redox chemistry, with Mo the more easily reduced. Previously the reduction potential for the $[Mo_3S_4(CN)_9]^{5-/6-}$ couple has been reported as -1.49 V (vs. NHE), $^{20.26}$ and from the differences in reduction potentials observed a value in the range -1.80 to -1.90 is estimated for the $[W_3S_4(CN)_9]^{5-/6-}$ couple. Red shifts in the UV/VIS spectra are observed on replacing Mo with W and Se with S, consistent with LMCT transitions.

Acknowledgements

We are grateful to the Royal Society for a Kapitza Fellowship (V. P. F.), the EPSRC for Research Grants and the Universities of Bloemfontein (G. J. L.) and Ibaraki (T. K.) for study leave.

References

- 1 T. Shibahara, Adv. Inorg. Chem., 1991, 37, 143–173.
- 2 F. A. Cotton, Z. Dori, R. Llusar and W. Schwotzer, J. Am. Chem. Soc., 1985, 107, 6734.
- 3 M. Martinez, B.-L. Ooi and A. G. Sykes, J. Am. Chem. Soc., 1987, 109, 4615.
- 4 T. Shibahara, A. Takeuchi, A. Ohtsuji, K. Kohda and H. Kuroya, *Inorg. Chim. Acta*, 1987, 127, 145.
- 5 B.-L. Ooi and A. G. Sykes, Inorg. Chem., 1989, 28, 3799.
- 6 M. Nasreldin, A. Olatunji, P. W. Dimmock and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1990, 1765.
- 7 D. M. Saysell, M. N. Sokolov and A. G. Sykes, *ACS Symp. Sex.*, 1996, **653**, 216–224.
- 8 M. Nasreldin, C. A. Routledge and A. G. Sykes, *J. Chem. Soc., Dalton Trans.*, 1994, 2809.
- 9 V. P. Fedin, M. N. Sokolov and A. G.. Sykes, *J. Chem. Soc.*, *Dalton Trans.*, 1996, 4089.

- 10 V. P. Fedin, G. J. Lamprecht and A. G. Sykes, *J. Chem. Soc.*, *Chem. Commun.*, 1994, 2685.
- 11 D. M. Saysell, V. P. Fedin, M. N. Sokolov, G. J. Lamprecht and A. G. Sykes, *Inorg. Chem.*, in the press.
- 12 M. D. Meienberger, K. Hegetschweiler, H. Rielgger and V. Granlich, *Inorg. Chim. Acta*, 1993, **213**, 157.
- 13 V. P. Fedin, M. N. Sokolov, O. A. Geras'ko, A. V. Virovets, N. V. Podberezskaya and V. Y. Fedorov, *Inorg. Chim. Acta*, 1991, 187, 81.
- 14 V. P. Fedin, H. Imoto, T. Saito, W. McFarlane and A. G. Sykes, *Inorg. Chem.*, 1995, **34**, 5097.
- 15 M. Nasreldin, G. Henkel, G. Kampmann, B. Krebs, G. J. Lamprecht, C. A. Routledge and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1993, 737.
- 16 G. J. Lamprecht, M. Martinez, M. Nasreldin, C. A. Routledge, N. Al-Shatti and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1993, 747.
- 17 V. P. Fedin, M. N. Sokolov, A. V. Virovets, N. V. Podberezskaya and V. Y. Federov, *Polyhedron*, 1992, 11, 2973.
- 18 W. Clegg, Acta Crystallogr., Sect. A, 1981, 37, 22.
- 19 G. M. Šheldrick, ŠHELXTL manual, revision 5, Siemens Analytical X-Ray Instruments, Madison, WI, 1994.
- 20 A. Müller, R. Jostes, W. Eltzner, C.-S. Nie, E. Diemann, H. Bögge, M. Zimmermann, M. Dartmann, U. Reinsch-Vogell, S. Che, S. J. Cyvin and B. N. Cyvin, *Inorg. Chem.*, 1985, 24, 2872.
- 21 F. H. Allen and O. Kennard, Chem. Des. Autom. News, 1993, 8, 31.
- 22 B.-L. Ooi, A. L. Petrou and A. G. Sykes, *Inorg. Chem.*, 1988, 27, 3626
- 23 J. Li, C.-W. Liu and J.-X. Lu, J. Chem. Soc., Faraday Trans., 1994, 90, 39.
- 24 V. P. Fedin and A. G. Sykes, unpublished work.
- 25 P. J. Vergamini, H. Vahrenkamp and L. F. Dahl, J. Am. Chem. Soc., 1971, 93, 6327.
- 26 W. Beck, W. Danzer and G. Thiel, Angew. Chem., Int. Ed. Engl., 1973, 12, 582.
- 27 K. Wieghardt, W. Herrmann, A. Müller, W. Eltzner and M. Zimmermann, Z. Naturforsch., Teil B, 1984, 39, 876.
- 28 T. Shibahara, M. Yamasaki, G. Sakane, K. Minami, T. Yabuki and A. Ichimura, *Inorg. Chem.*, 1992, **31**, 640.
- 29 F. A. Cotton, R. Llusar and C. T. Eagle, J. Am. Chem. Soc., 1989, 111, 4332.

Received 21st November 1996; Paper 6/07930J